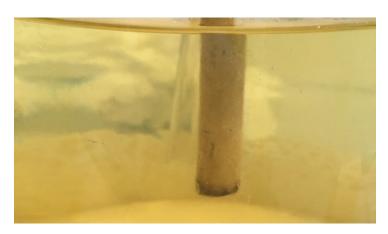


Pre-Bottling
Techniques
for Improved
Quality and
Stability

Racking

Analysis


Blending

Wine Additives

Fining Agents

Filtration

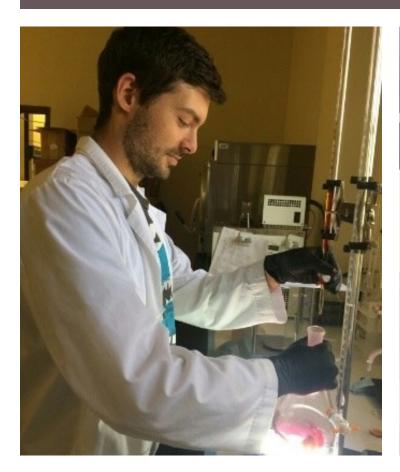
Static Racking

Transfer of wine above its solid sediments (lees)

also known as decanting

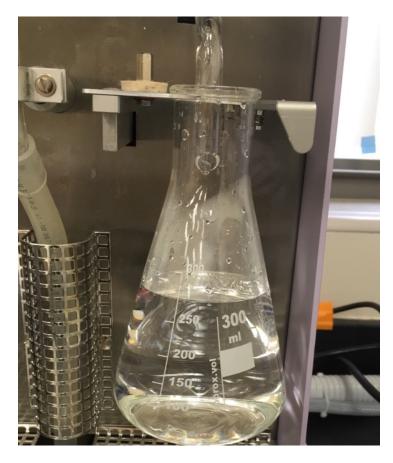
Can use a syphon or pump

Lees can be composed of many different things including yeast, bacteria, proteins, tartrates.


Racking can be done before, and several times post fermentation

Analysis: pH & Acidity

- Most important parameter for winemaking
- Typical wine pH: 2.8-3.5
- Depends on style; balance
- Affects flavor, aroma, color, acidity, microbial stability, sulfur dioxide effectiveness.
- pH meter


Analysis: Sulfur Dioxide

- Antimicrobial and Antioxidant additive
- Free & Total Sulfur
- Different forms based on pH
- Ripper Titration
- Health concern; Risk for people with Asthma
- Yeast actually produce a small amount during fermentation

Analysis: Specific Gravity & Alcohol Content

- Alcohol content important for style
- Distillation
- Hydrometer
- (FG OG) x 131.25 = ABV %
- Gravimetric scale

Blending

- Purpose: overcoming defects, enhancing complexity, or adjusting characteristics
- Can occur at any time in winemaking process; field blending, or after fermentation
- Varietals require at least 75% of labeled variety
- Some blends may cause stabilization issues

Popular Wine Additives

2 (8.08	9 0	N
The state of the s	136		
4			
			10
	9		
4	Y	18	A.
		Н	
		1	1

Sorbic Acid	Lysozym	Tannins
Antimicrobial used to kill yeast. Stops fermentation and	Enzyme which is antibacterial. Degrades	Phenolic compounds which can enhance aging
prevents	peptidoglycan cell	and color stability.
refermentation.	wall.	
Sweet wine		
production.		

Fining Agents

TABLE 1. The most important fining agents used during winemaking.

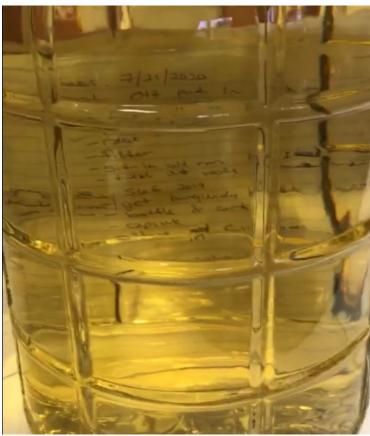
Fining agent	Product form	Purpose	Preparation (Dosage)
Active carbon	Powder or granules	Removal of undesirable colour and flavour	None. (0.1 - 0.4 g/l)
Bentonite	Powder or granules	Removal of protein. Often in combination with gelatine.	Allow to swell overnight. Mix with lukewarm water before adding. (0.1 - 1.0 g/l)
Egg white	Eggs or albumin powder	Fining of red wine. Reduces tartness in red wines.	Separate yolk and white of egg. Dissolve in 0.5% table salt solution or Dissolve albumin powder in 0.5% table salt solution. (3 eggs/200 litres or 0.1 - 0.5 g/l albumin)
Gelatine	Powder	Reduction of tartness in red wines. Often in combination with bentonite and silicasol.	Leave to swell overnight in cold water. Dissolve the next day by heating water. (0.05 - 0.15 g/l)
Casein	Milk or powder	Reduces bitter taste in wine.	Dissolve in alkaline warm water that contains one third of the casein weight's potassium carbonate. (0.05 - 0.3 g/l)
P∨PP Polyclar AT	Powder	Prevents browning and pinking in white wines.	Dissolve in a small amount of wine. (0.2 - 0.5 g/l)
Silicasol Kieselsol Baykisol	Aqueous solution	Accelerates fining lees. Often used after gelatine fining.	None. (0.06 - 0.2 g/l)
Isinglass	Ground or unground isinglass strips	Reduces tartness and bitterness.	According to product prescriptions. (0.02 - 0.1 g/l)

https://www.wineland.co.za/tips-for-cellar-workers-fining-of-juice-and-wine/

Benchtop Testing

- Testing dosage on small scale
- Sensory and spectrophotometric analysis
- Choose the best dosage and continue forward
- Let settle for 3-5 days, then rack

Cold Stabilization


- 14.5% BY VO

- Potassium Tartrate may form from cold storage/shipping
- Wineries try to prevent using cold stabilization

Filtration

- Different pore sizes
- Removes any remaining solid compounds
- May remove yeast and bacterial cells
- Will cause some aeration so its better to let sit for a couple of days before bottling

Bottling

- Must ensure the wine is stable; no bubbles or haze.
- Different options for packaging:
- Bottles: glass or plastic
- Closures: traditional, compound, synthetic, screwcaps.
- Affects how much oxygen goes into the bottle.

